Skip to main content

Table 5 Prediction performance of developed algorithms and diabetes indicators for diabetic macular edema

From: Automated and code-free development of a risk calculator using ChatGPT-4 for predicting diabetic retinopathy and macular edema without retinal imaging

 

ROC-AUC [95% CI]

Accuracy (%), [95% CI]

Sensitivity (%), [95% CI]

Specificity (%), [95% CI]

P-value*

Internal validation

 LR (ChatGPT-4)

0.940 [0.914, 0.960]

85.6 [82.0, 88.7]

100.0 [59.0, 100.0]

85.4 [81.7, 88.5]

Reference

 RF (R)

0.918 [0.888, 0.942]

84.0 [80.3, 87.3]

100.0 [59.0, 100.0]

83.8 [79.9, 87.1]

0.261

 GBM (Orange)

0.955 [0.931, 0.972]

86.5 [82.9, 89.5]

100.0 [59.0, 100.0]

86.3 [82.7, 89.3]

0.463

 SVM (MATLAB)

0.892 [0.859, 0.919]

78.2 [74.1, 81.9]

85.7 [42.1, 99.6]

78.1 [73.9, 81.8]

0.368

 HbA1c

0.896 [0.865, 0.924]

68.5 [64.0, 72.8]

100.0 [59.0, 100.0]

68.0 [63.4, 72.4]

0.328

 DM duration

0.765 [0.724, 0.804]

49.9 [45.1, 54.6]

100.0 [59.0, 100.0]

49.1 [44.3, 53.8]

0.007

External validation

 LR (ChatGPT-4)

0.835 [0.780, 0.881]

66.3 [59.8, 72.4]

100.0 [29.2, 100.0]

65.9 [59.3, 72.1]

Reference

 RF (R)

0.851 [0.798, 0.895]

69.4 [63.0, 75.3]

100.0 [29.2, 100.0]

69.0 [62.5, 74.9]

0.414

 GBM (Orange)

0.851 [0.798, 0.895]

71.6 [65.3, 77.3]

100.0 [29.2, 100.0]

71.2 [64.8, 77.0]

0.805

 SVM (MATLAB)

0.757 [0.695, 0.811]

82.5 [76.9, 87.2]

66.7 [9.4, 99.1]

82.7 [77.2, 87.4]

0.308

 HbA1c

0.821 [0.765, 0.869]

72.5 [66.2, 78.2]

100.0 [29.2, 100.0]

72.1 [65.8, 77.8]

0.819

 DM duration

0.770 [0.710, 0.824]

60.3 [53.6, 66.6]

100.0 [29.2, 100.0]

59.7 [53.0, 66.2]

0.609

  1. CI confidence interval, DM diabetes mellitus, GBM gradient boosting machine, LR logistic regression, ROC-AUC area under the receiver operating characteristic curve, SVM support vector machine
  2. *Differences in ROC-AUC values compared to the logistic regression performed using ChatGPT-4